

Teachers review the sequence of teaching throughout the year and use their discretion to adapt, revisit or reteach content when necessary to support the learning of our students.

Maths – KS3	Year 7	Year 8	Year 9	
Integers and Decimals	Ordering numbers, Multiplying and Dividing by Powers of Ten, Positive, Negative and Decimal numbers in all four operations (add, subtract, multiply and divide), Money problems, Calculator use for Money Problems, rounding to the nearest 10, 100 and 100, know and use the order of operations including brackets and indices, be able to multiply and divide decimals.	Recognise and use multiples, factors and primes, prime factor decomposition and find the highest common factor (HCF) and lowest common multiple (LCM), use Venn diagrams to find HCF & LCM, find square roots and cube roots, rounding to decimal places and significant figures, estimate answers to calculations, order decimals and negative numbers, multiply and divide by powers of ten, multiply and divide decimals, know and use the order of operations including brackets and indices.	multiply and divide by powers of ten, highest common factor and lowest common multiple, rounding, upper and lower bounds. Add and subtract with positive and negative numbers.	
Measure, Perimeter & Area	Converting Metric Units, Convert between Metric and Imperial Units, Measuring lengths, finding Area and Perimeter of rectangles, triangles, parallelograms and compound shapes.	Converting Metric Units, Convert between Metric and Imperial Units, Measuring lengths, finding Area and Perimeter of rectangles, triangles, parallelograms and compound shapes, finding the area of trapezia, area and circumference of circles and semi-circles.	Area of different shapes, conversion between units, properties of a circle, surface area and volume of 3D shapes, compound measures including speed and density.	
Expressions & Formulae	Simplifying expressions by collecting like terms, substituting values into formulae, expanding brackets.	Simplifying expressions by collecting like terms, substituting values into formulae, expanding brackets, find common factors in algebraic terms, factorise expressions, derive formulae, change the subject of a formula, use real life formula.	Simplify terms, expand brackets, factorise expressions, derive a formula, substitute values into a formula, change the subject of a formula.	
2D Shapes & Angle Properties	Naming types of angles, estimating and constructing angles, naming polygons, differentiating between regular and irregular polygons, classifying triangles and quadrilaterals and knowing their properties, knowing angle facts and being able to calculate missing angles using these, knowing facts about angles on parallel and intersecting lines.	Know facts about angles on parallel and intersecting lines, calculate interior and exterior angles of regular polygons, understand and recognise congruent and similar shapes and triangles. Calculate the linear scale factor of similar shapes, calculate the missing lengths of similar shapes.	Know types of angle and triangles, calculate missing angles, know facts about angles on parallel and intersecting lines, calculate interior and exterior angles in polygons. Know the rules of bearings and calculate a return bearing. Construct triangles using a protractor and compass.	
Fractions, Decimals & Percentages	Converting mixed numbers and improper fractions, Fractions of amounts, add/subtract/ multiply/divide fractions. Converting a decimal into a fraction, writing percentages as fractions, finding percentages of amounts, calculating percentage increase and decrease.	Converting mixed numbers and improper fractions, Fractions of amounts, add/subtract/ multiply/divide fractions. Calculate percentages of amounts, percentage change, use percentage to solve problems, convert between fractions, decimals and percentages, express one number as a percentage of another.	Find equivalent fractions, four operations with fractions, calculate percentages including an increase and decrease, find a reverse percentage, calculate compound interest. Multiply and divide decimals.	
Probability	Finding basic probabilities based on equally likely outcomes, understand that mutually exclusive events add up to 1, using data collected from experiments to estimate probability, compare experimental and theoretical probabilities, construct sample spaces, using Venn diagrams to sort data.	Finding basic probabilities based on equally likely outcomes, Show all the possible outcomes of two or more events in a list or table form, understand that mutually exclusive events add up to 1, using data collected from experiments to estimate probability, compare experimental and theoretical probabilities, use Venn diagrams to calculate probabilities, construct simple tree diagrams, use tree diagrams to calculate probabilities.	Calculate both theoretical and experimental probability. Create and use a sample space diagram to calculate probability.	
Graphs	Plot horizontal and vertical lines, plot equations of straight lines using a table of values, understand that functions in the format of y = mx + c represent a straight line, plot real life graphs, plot and interpret time series graphs.	Plot equations of straight lines using a table of values, understand that $y = mx + c$ represents a straight line, plot quadratic and cubic graphs using a table of values, find the midpoint of two coordinates, draw the graph on an equation, plot real life graphs, plot and interpret time series.	Plot coordinates in four quadrants, draw a straight line graph, investigate gradients of parallel and perpendicular lines, plot quadratic and cubic graphs, use distance-time graphs.	
Transformations	Translating, reflecting and rotating 2D shapes, being able to recognise rotational symmetry and tessellate regular shapes, enlarging shapes using positive scale factors (including simple fractional scale factors).	Translating, reflecting and rotating 2D shapes, being able to recognise rotational symmetry and tessellate regular shapes, enlarging shapes using positive, negative and fractional scale factors, enlarge shapes using a centre enlargement.	Describe and carry out the four transformations reflections, rotations, enlargements and translations.	
Equations	Use inverse operations to solve equations, solve one and two step equations, solving equations with unknowns on both sides, solve equations involving brackets, solve equations where the solution is a fraction or negative number, construct and solve equations.	Solve linear equations with unknowns on one or both sides, solve equations involving brackets, including when the solution is fractional or negative, solve equations involving fractions, construct real life equations.	Solve and form equations, construct equations to solve problems, solve simultaneous equations.	
Factors and Multiples	Know square and cube numbers and find square roots and cube roots, recognise and use multiples, factors and prime numbers, prime factor decomposition, using prime factor decomposition to find the highest common factor and lowest common multiple.			
Sequences	Use rules to find missing terms in sequences, generate terms of a sequence given a term-to- term or position-to-term rule, find the nth term of a sequence.	Find the nth term, recognise and describe geometric sequences, quadratic sequences.	Generate terms of a sequence, find the term-to term rule and the next terms of a sequence find the nth term of a linear sequence, find the nth term of a quadratic sequence.	
Proportion	Write proportion as a fraction or percentage, find the values of quantities when they change in direct proportion to each other, unitary method	Solve problems using direct proportion, compare proportions by converting to percentages, solve problems involving direct proportion using algebraic methods.		

	with direct proportion, increase or decrease quantities using direct proportion.		
Ratio	Simplify ratios and find equivalent ratios, divide a quantity in a given ratio, write ratios as fractions, know the difference between ratio and proportion.	Divide a quantity in a given ratio, solve problems using ratio and proportion, reverse ratio problems.	
Statistics	Find averages of a set data (mean, mode, median), find the range and use it to measure the spread of data, compare two data sets using an average and the range, collect discrete and continuous data in a grouped frequency tables, find the modal class from a grouped frequency table. Find averages and spread from frequency tables, construct and interpret frequency diagrams, comparative bar charts and pie charts, know the difference between primary and secondary data, create forms needed to record data for investigations.	Design a statistical survey and collect data, understand the effect sample size has on an investigation, find averages and spread of grouped and discrete data, draw stem and leaf diagrams and use them to find averages and range of data sets, compare distributions of data sets and make inferences, construct and interpret scatter graphs including lines of best fit.	Calculate averages including grouped data, calculate an estimated mean construct statistical diagrams.
3D Shapes, Surface Area & Volume	Know various 3D shapes and their names & properties, understand faces, edges and vertices, nets of 3D shapes, construct 3D shapes, find the surface area and volume of cuboids.	Recognise names and nets of 3D shapes, draw plans and elevations of 3D shapes. Find surface area of prisms including cylinders, find the volume of prisms including cylinders.	Find missing sides in similar shapes, understand and use area and volume scale factor.
Constructions	Construction triangles using ASA, SAS, SSS & RHS, construct other shapes using a ruler, compass and a protractor.	Construct triangles and other shapes using a ruler, compass and a protractor, construct bisectors and perpendicular lines, describe a locus of a moving point and draw it, use bearing to specify directions.	
Standard form and indices		Use index notation for integer powers, multiply and divide numbers in index form using index laws, use index notation including negative indices, substitute into expressions involving powers.	Convert between standard form and ordinary numbers, understand and use laws of indices.
Pythagoras' theorem and trigonometry			Calculate missing sides and solve problems in right angled triangles. Find missing sides and angles and solve problems using trigonometry.

Maths – KS4 & 5	Year 9 – Summer Term 2	Year 10	Year 11	Year 12
Higher	Rounding/Upper and lower bounds.	Fractions – Fraction calculations	Vectors – Calculations with vectors. Vector	Proof
	Round to a given number of decimal places		geometry in 2D Vector proof in 2D.	Understand and use the structure of
	and significant figures.	2D and 3D shapes – Plans and elevations.		mathematical proof, proceeding from
	Calculate the upper and lower bound of a	Area, surface area and volume	Surds – Simplify, expand and rationalise	assumptions through a series of logic
	measurement and carry out calculations		surds	steps to a conclusion; use methods of
	using bounds. Calculate limits of accuracy.	Straight Line Graphs – Drawing linear		including:
		graphs, equation of a line	Probability – Two way tables, probability	Proof by deduction
	Integers	Collecting Date Turses of data compliant	tree diagrams	Proof by exhaustion
	Recognise different types of number. Write a number as a product of prime factors. Find	Collecting Data – Types of data, sampling	Venn Diagrams – Set notation. Complete	Disproof by counter example.
	the HCF and LCM of 2 numbers.	Statistical measures – Averages and	and interpret Venn diagrams	Algebra and functions
	the field and Lewi of 2 humbers.	Averages in tables		Understand and use the laws of indic
	Algebraic Manipulation		Sequences – Arithmetic and geometric	all rational exponents.
	Expand and simplify expressions with	Percentages – Percentage calculations and	sequences. Nth term of linear and quadratic	Use and manipulate surds, including
	brackets. Substitute into formulae. Factorise	interest	sequences	rationalising the denominator.
	expressions and factorise quadratic			Work with quadratic functions and th
	expressions.	Decimals – Decimal calculations, convert	Ratio and Proportion – Ratio and	graphs.
		recurring decimals to fractions	proportion problems. Unitary proportion.	The discriminant of a quadratic funct
	Solve Equations		Direct and inverse proportion.	including the conditions for real and
	Solve linear equations including equations	Scatter Graphs – Draw and interpret scatter		repeated roots.
	in which the unknown appears on both	graphs	Functions – Function notation. Composite	Completing the square.
	sides of the equation and including		and inverse function calculations	Solution of quadratic equations, inclu
	equations with fractions.	Measures – Convert area and volume units.	Dura f. Dura and the units of Alexandre	solving quadratic equations in a funct
	Co-ordinates	Compound measures	Proof – Prove results using Algebra	the unknown.
	Find the midpoint of two points and find the	Inequalities – Solve inequalities. Represent	Iterations – Rearrange formula. Find values	Solve simultaneous equations in two variables by elimination and by substi
	length between 2 points.	inequalities on a number line and graphical	and solve equations using iterations	including one linear and one quadrati
	length between 2 points.	inequalities	and solve equations using iterations	equation.
	Circles			Solve linear and quadratic inequalitie
	Identify and apply circle properties. Find the	Simultaneous Equations – Solve linear	Review mock exam 1 and revise for mock	single variable and interpret such
	area and circumference of a circle and find	simultaneous equations by elimination,	exam 2.	inequalities graphically,
	the length of arcs and the area of sectors	substitution and graphically		including inequalities with brackets a
				fractions.
		Transformations – Rotate, reflect, enlarge	Review mock exam 2. Revise and prepare	Manipulate polynomials algebraically
		and translate shapes. Describe	for GCSE exams	including expanding brackets and coll
		transformations		like terms, factorisation and simple
		Usedling Data Stars and last succeletion		algebraic division; use of the factor
		Handling Data – Stem and leaf, cumulative frequency, box plot, time series and		theorem. Understand the effect of simple
		histograms diagrams		transformations on the graph of $y = f$
				including sketching associated graphs
		Ratio and Proportion – Ratio problems.		y = af(x), y = f(x) + a,
		Unitary proportion. Direct and inverse		y = f(x + a), y = f(ax)
		proportion. Proportion graphs		, , , , , ,
				Coordinate geometry in the (x,y) plan
		Angles and Polygons – Angles in parallel		Understand and use the equation of a
		lines, Angles in polygons. Bearings		straight line, including the forms y – y
				$-x_1$) and ax + by + c = 0;
		Similar shapes – Congruent and similar		Understand and use the coordinate
		shapes. Linear, area and volume scale		geometry of the circle including using
		factors.		equation of a circle in the form $(x_1, x_2)^2 + (x_2, x_3)^2$
		Dutherson and Trice and Trice		$(x-a)^2 + (y-b)^2 =$
		Pythagoras and Trigonometry – Pythagoras		Sequences and series
		and Trigonometry in 2D and 3D. Exact trigonometric values		Sequences and series Understand and use the binomial exp
				of $(a + bx)^n$ for positive integer n; the
				or (a+ bx) for positive integer if, the

	Voor 10
	Year 13 Proof
	Similar to year 12 proofs with the addition
given	of
al	Proof by contradiction (including proof of
f proof,	the irrationality of 2 and the infinity of
	primes, and application to unfamiliar
	proofs).
	Algebra and functions
	Include all the topics in Year 12 plus
	The modulus of a linear function.
es for	Understand and use composite functions;
	inverse functions and their graphs.
	Decompose rational functions into partial
oir	fractions (denominators not more
eir	complicated than squared linear terms and with no more than 3 terms, numerators
ion,	constant or linear).
	Use of functions in modelling, including
	consideration of limitations and refinements
	of the models.
ding	
tion of	Coordinate geometry in the (x,y) plane
	All the contents in year 12 plus Understand and use the parametric
itution,	equations of curves and conversion
ic	between Cartesian and parametric forms.
	Use parametric equations in modelling in a
s in a	variety of contexts.
	Sequences and series
nd	Extend to any rational n, including its use for
	approximation; be aware that the expansion
,	is valid for bx a < 1 (proof not required)
ecting	Work with sequences including those given
	by a formula for the nth term and those
	generated by a simple relation of the form xn + 1 = f(xn); increasing sequences;
	decreasing sequences; periodic sequences.
(x),	Understand and use sigma notation for
:	sums of series.
	Understand and work with arithmetic
	sequences and series, including the
ne	formulae for nth term and the sum to n terms
3	Understand and work with geometric
∕₁ = m(x	sequences and series, including the
	formulae for the nth term and the sum of a
	finite geometric series; the sum to infinity of
g the	a convergent geometric series, including the
	use of r < 1; modulus notation
ansion	

					L
		Indices – Index laws including fractional and		notations n! and r n C link to binomial	Trigonometry
		negative		probabilities.	Work with radian measure, including use for
				Use of Pascal's triangle. Relation between	arc length and area of sector.
		Standard Form – Convert to and from		binomial coefficients	Understand and use the standard small
		standard form. Calculations with standard		Trigonometry	angle approximations of sine, cosine and
		form		Understand and use the definitions of sine,	tangent
				cosine and tangent for all arguments; the	sin θ ≈ θ
		Experimental probability – Estimate		sine and cosine rules; the area of a triangle	$\cos \theta \approx 1 - \theta^2/2$
		probabilities from data. Frequency trees		in the form	tanθ≈θ
				½ ab sin C.	Where θ is in radians.
		Further graphs – Draw, sketch and interpret		Understand and use the sine, cosine and	Know and use exact values of sin and cos for
		quadratic, cubic, circle, reciprocal,		tangent functions; their graphs, symmetries	$0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}, \pi$
		exponential and trigonometric graphs		and periodicity.	and multiples thereof, and exact values of
				Understand and use	tan for
		Compound measures – Speed, distance and		$\tan \theta = \frac{\sin \theta}{\cos \theta}$	
		time. Density, mass and volume, Pressure,			$0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \pi$ and multiples thereof.
		Force and Area.		Understand and use	Understand and use the definitions of
				$\sin^2 \theta + \cos^2 \theta = 1$	secant, cosecant and cotangent and of
		Further trigonometry and functions – Sine		Solve simple trigonometric equations in a	arcsin, arccos and arctan; their relationships
		and cosine rule. Sketching trigonometric		given interval, including quadratic equations	to sine, cosine and tangent; understanding
		graphs		in sin, cos and tan and equations involving	of their graphs; their ranges and domains.
		Bidding		multiples of the unknown angle.	Understand and use
		Manipulating expressions- Rearrange and			sec ² θ = 1 + tan ² θ and cosec ² θ = 1+ cot ² θ
		create formula. Expand and Factorise.		Exponentials and logarithms	Understand and use double angle formulae;
				Know and use the function a ^x and its graph,	use of formulae for sin (A \pm B), cos (A \pm B),
		Algebraic fractions. Completing the square		where a is positive. Know and use the	and tan (A ± B), understand geometrical
		Quadratia aquatiana Calua hu factorising		function e ^x and its graph	proofs of these formulae. Understand and
		Quadratic equations – Solve by factorising,		Know that the gradient of e ^{kx} is equal to ke ^{kx}	use expressions for a $\cos\theta$ + $b\sin\theta$ in the
		completing the square and quadratic		and hence understand why the exponential	equivalent forms of r cos ($\theta \alpha \pm \alpha$) or rsin (θ
		formula.		model is suitable in many applications.	$\alpha \pm \alpha$)
				Know and use the definition of log _a x as the	Construct proofs involving trigonometric
		Equation of a circle – Sketch equation of a		inverse of a^x , where a is positive and $x \ge 0$	functions and identities.
		circle. Solve simultaneous equations with		Know and use the function ln x and its	
		linear and circle equations. Find equation of		graph. Know and use In x as the inverse	Exponentials and logarithms
		a tangent to a circle		function of e ^x Understand and use the laws	Similar to yoar 12
				of logarithms:	
		Loci and Constructions – Use ruler, compass		~	Vestere
		and protractor to construct and solve		$\log_{a}x + \log_{a}y = \log_{a}(xy) \log_{a}x - \log_{a}y = \log_{a}\frac{x}{y}$	Vectors Similar topics in year 12 vectors and
		problems with loci		klog _a x = log _a x ^k	. ,
				Solve equations of the form a ^x = b	extended three dimensions
		Functions and graph transformations –		Use logarithmic graphs to estimate	Differentiation
		Apply graph transformations to different		parameters in relationships of the form y =	Differentiation
		types of graphs		ax ⁿ and y = kb ^x , given data for x and y	In addition to year 12
				Understand and use exponential growth and	differentiation from first principles for small
		Circle theorems – Understand and use angle		decay; use in modelling (examples may	positive integer powers of x and for sin x
		properties of a circle. Circle theorem proof.		include the use of e in continuous	and cos x
Foundation	Integers	Formulae – Substitution, create expressions	Order of Operations – Order of operations,	compound interest, radioactive decay, drug	Understand and use the second derivative
	Calculate with positive and negative	and equations, rearrange formula	use of calculator	concentration decay, exponential growth as	as the rate of change of gradient;
	integers. Recognise types of number. Write			a model for population growth);	connection to convex and concave sections
	a number as a product of prime factors. Find	Coordinates – Plotting coordinates,	Measures – Metric units. Speed, Distance	consideration of limitations and refinements	of curves and points of inflection
	the HCF and LCM of a number.	midpoint, drawing linear graph	and Time. Density, mass and Volume.	of exponential models.	Differentiate e ^{kx} and a ^{kx} , sin kx, cos kx, tan kx
			Pressure, Force and Area.		and related sums, differences and constant
	Powers and Roots	Fractions – Equivalent fractions, fraction		Differentiation	multiples. Understand and use the
	Calculate squares and square roots, cube	calculations	Loci – Draw locus of different scenarios	Understand and use the derivative of f(x) as	derivative of ln x
	and cube roots. Use index laws for			the gradient of the tangent to the graph of y	Differentiate using the product rule, the
	multiplication and division, including zero	Index Notation – Simplify using index laws	Real life graphs – Interpret linear graphs.	= f(x) at a general point (x, y) ; the gradient	quotient rule and the chain rule, including
	and negative powers.	muex notation - simpling using index laws	Draw and recognise other algebraic graphs	of the tangent as a limit; interpretation as a	problems involving connected rates of
		Constructions – Constructions with ruler,	Draw and recognise other algebraic graphs	rate of change	change and inverse functions.
	Angles	-	Similar shapes – Congruence and similarity.	sketching the gradient function for a given	Differentiate simple functions and relations
	Angles	protractor and compass		curve	defined implicitly or parametrically, for first
			Linear, area and volume scale factors	second derivatives	derivative only.
L					

Recognise types of angle. Measure and draw angles. Calculate angles using angle facts and angles with parallel lines. Co-ordinates Plot and identify coordinates in the four quadrants. Draw straight line graphs of linear equations. Find the midpoint of a line segment. Algebraic Manipulation Expand and simplify expressions with brackets. Substitute into formulae. Factorise expressions and factorise quadratic expressions. Statistical Measures Find mean, median, mode and range for a set of data. Calculate averages from group data. Calculate an estimated mean from group data.	 Area and Perimeter – Area and Perimeter of 2D shapes, Surface Area of 3D shapes 3D Shapes – Recognise, draw and sketch 3D shapes including nets. Plans and elevations. Volume Graphical Representations – Pictograms, bar charts, stem and leaf diagram, time series graphs, pie charts Scatter Graphs – Draw and interpret scatter graphs Sequences – Finding missing terms of a sequence, pattern sequences, nth term of a sequence Percentages – Equivalent fractions, decimals and percentages. Percentage calculations. Interest Equations – Solve linear and simultaneous equations Transformations – Reflect, rotate, translate and enlarge shapes. Describe transformations Decimals – Decimal calculations. Convert decimals, fractions and percentages. Rounding to decimal places and significant figures Graphs – Draw linear graphs, equation of a line Probability –Probability of single events, 2 independent events, mutually exclusive events. Experimental probability. Probability tree diagrams Pythagoras – Pythagoras in 2D The Circle – Name parts of a circle. Area and circumference. Volume/Surface Area of cylinder. Polygons – Properties and angles of polygons Percentages and Variation – Proportion, reverse percentages. Exponential growth and decay 	Review mock exam 1 and revise for mock exam 2. Review mock exam 2. Revise and prepare for GCSE exams	differentiation from first principles for sr positive integer powers of x Differentiate x n, for rational values of n, and related constant multiples, sums an differences. Apply differentiation to find gradients, tangents and normals, maxima and mini and stationary points. Identify where functions are increasing of decreasing. Integration Know and use the Fundamental Theorer Calculus Integrate x n (excluding n = -1) and relat sums, differences and constant multiple Evaluate definite integrals; use a definite integral to find the area under a curve. Vectors Use vectors in two dimensions. Calculate the magnitude and direction of vector and convert between component form and magnitude/direction form. Add vectors diagrammatically and perfo the algebraic operations of vector additi and multiplication by scalars, and understand their geometrical interpretations. Understand and use position vectors; calculate the distance between two poir represented by position vectors. Use vectors to solve problems in pure mathematics and in context, (including forces)

n,pure mathematics and in context, (contexts may include kinematics, population growth and modelling the relationship between price and demand).nimaIntegration Integrate e ^{kx} , 1/x, sin kx, cos kx and related sums, differences and constant multiples. Find the area between two curves Understand and use integration as the limit of a sum.em ofCarry out simple cases of integration by substitution and integration by parts; understand these methods as the inverse processes of the chain and product rules respectively (Integration by substitution includes finding a suitable substitution will lead to a function which can be integrated; integration by parts includes more than one application of the method but excludes reduction formulae.) Integrate using partial fractions that are linear in the denominator. Evaluate the analytical solution of simple first order differential equations with separable variables, including finding particular solutions (Separation of variables may require factorisation involving a common factor.) Interpret the solution of a differential equation in the context of solving a		
andand modelling the relationship between price and demand).nimaIntegration Integrate e ^{kx} , 1/x, sin kx, cos kx and related sums, differences and constant multiples. Find the area between two curves Understand and use integration as the limit of a sum.em ofCarry out simple cases of integration by substitution and integration by parts; understand these methods as the inverse processes of the chain and product rules respectively (Integration by substitution includes finding a suitable substitution and is limited to cases where one substitution will lead to a function which can be integrated; integration by parts includes more than one application of the method but excludes reduction formulae.) Integrate using partial fractions that are linear in the denominator. Evaluate the analytical solution of simple first order differential equations with separable variables, including finding particular solutions (Separation of variables may require factorisation involving a common factor.) Interpret the solution of a differential equation in the context of solving a problem, including identifying limitations of the solution; includes links to kinematics.Numerical methods Locate roots of f(x) = 0 by considering changes of sign of f(x) in an interval of x on which f(x) is sufficiently well behaved. Understand how change of sign methods can fail. Solve equations approximately using simple iterative methods; be able to draw associated cobweb and staircase diagrams. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1= g(xn) Understand how such methods can fail. Understand and use numerical integration of functions, including the approximate area under a curve and limits that it must lie between. Use numerical me	small	
price and demand).nimaIntegrate e ^{Ix} , 1/x, sin kx, cos kx and related sums, differences and constant multiples. Find the area between two curves Understand and use integration as the limit of a sum.em ofCarry out simple cases of integration by substitution and integration by parts; understand these methods as the inverse processes of the chain and product rules respectively (Integration by substitution includes finding a suitable substitution will lead to a function which can be integrated; integration by parts includes more than one application of the method but excludes reduction formulae.) Integrate using partial fractions that are linear in the denominator. Evaluate the analytical solution of simple first order differential equations with separable variables, including finding particular solutions (Separation of variables may require factorisation involving a common factor.) Interpret the solution of a differential equation in the context of solving a problem, including identifying limitations of the solution; includes links to kinematics.Numerical methods Locate roots of f(x) = 0 by considering changes of sign of f(x) in an interval of x on which f(x) is sufficiently well behaved. Understand how change of sign methods can fail. Solve equations approximately using simple iterative methods; be able to draw associated cobweb and staircase diagrams. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1= g(xn) Understand how such methods can fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in	-	
g orIntegrate e ^{kx} , 1/x, sin kx, cos kx and related sums, differences and constant multiples. Find the area between two curves Understand and use integration as the limit of a sum.em ofCarry out simple cases of integration by substitution and integration by parts; understand these methods as the inverse processes of the chain and product rules respectively (Integration by substitution includes finding a suitable substitution and is limited to cases where one substitution will lead to a function which can be integrated; integration by parts includes more than one application of the method but excludes reduction formulae.) Integrate using partial fractions that are linear in the denominator. Evaluate the analytical solution of simple first order differential equations with separable variables, including finding particular solutions (Separation of variables may require factorisation involving a common factor.) Interpret the solution of a differential equation in the context of solving a problem, including identifying limitations of the solution; includes links to kinematics.Numerical methods Locate roots of f(x) = 0 by considering changes of sign of f(x) in an interval of x on which f(x) is sufficiently well behaved. Understand how change of sign methods can fail. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1 = g(xn) Understand how such methods can fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in	inu	
g orIntegrate e ^{kx} , 1/x, sin kx, cos kx and related sums, differences and constant multiples. Find the area between two curves Understand and use integration as the limit of a sum.em ofCarry out simple cases of integration by substitution and integration by parts; understand these methods as the inverse processes of the chain and product rules respectively (Integration by substitution includes finding a suitable substitution and is limited to cases where one substitution will lead to a function which can be integrated; integration by parts includes more than one application of the method but excludes reduction formulae.) Integrate using partial fractions that are linear in the denominator. Evaluate the analytical solution of simple first order differential equations with separable variables, including finding particular solutions (Separation of variables may require factorisation involving a common factor.) Interpret the solution of a differential equation in the context of solving a problem, including identifying limitations of the solution; includes links to kinematics.Numerical methods Locate roots of f(x) = 0 by considering changes of sign of f(x) in an interval of x on which f(x) is sufficiently well behaved. Understand how change of sign methods can fail. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1 = g(xn) Understand how such methods can fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in	nima	Integration
Find the area between two curves Understand and use integration as the limit of a sum. Carry out simple cases of integration by substitution and integration by parts; understand these methods as the inverse processes of the chain and product rules respectively (Integration by substitution includes finding a suitable substitution and is limited to cases where one substitution will lead to a function which can be integrated; integration by parts includes more than one application of the method but excludes reduction formulae.) Integrate using partial fractions that are linear in the denominator. Evaluate the analytical solution of simple first order differential equations with separable variables, including finding particular solutions (Separation of variables may require factorisation involving a common factor.) Interpret the solution of a differential equation in the context of solving a problem, including identifying limitations of the solution; includes links to kinematics. Numerical methods Locate roots of f(x) = 0 by considering changes of sign of f(x) in an interval of x on which f(x) is sufficiently well behaved. Understand how change of sign methods can fail. Solve equations approximately using simple iterative methods; be able to draw associated cobweb and staircase diagrams. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1=g(xn) Understand how such methods can fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in	iiiiid	Integrate e ^{kx} , 1/x, sin kx, cos kx and related
 Understand and use integration as the limit of a sum. Carry out simple cases of integration by substitution and integration by parts; understand these methods as the inverse processes of the chain and product rules respectively (Integration by substitution includes finding a suitable substitution will lead to a function which can be integrated; integration by parts includes more than one application of the method but excludes reduction formulae.) Integrate using partial fractions that are linear in the denominator. Evaluate the analytical solution of simple first order differential equations with separable variables, including finding particular solutions (Separation of variables may require factorisation involving a common factor.) Interpret the solution of a differential equation in the context of solving a problem, including identifying limitations of the solution; includes links to kinematics. Numerical methods Locate roots of f(x) = 0 by considering changes of sign of f(x) in an interval of x on which f(x) is sufficiently well behaved. Understand how change of sign methods can fail. Solve equations approximately using simple iterative methods; be able to draw associated cobweb and staircase diagrams. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1=g(xn) Understand how such methods an fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. 	g or	-
em of ated ated les.Carry out simple cases of integration by substitution and integration by parts; understand these methods as the inverse processes of the chain and product rules respectively (Integration by substitution includes finding a suitable substitution and is limited to cases where one substitution will lead to a function which can be integrated; integration by parts includes more than one application of the method but excludes reduction formulae.) Integrate using partial fractions that are linear in the denominator. Evaluate the analytical solution of simple first order differential equations with separable variables, including finding particular solutions (Separation of variables may require factorisation involving a common factor.) Interpret the solution of a differential equation in the context of solving a problem, including identifying limitations of the solution; includes links to kinematics.Numerical methods Locate roots of f(x) = 0 by considering changes of sign of f(x) in an interval of x on which f(x) is sufficiently well behaved. Understand how change of sign methods can fail. Solve equations approximately using simple iterative methods; be able to draw associated cobweb and staircase diagrams. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1= g(xn) Understand how such methods can fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in		
 substitution and integration by parts; understand these methods as the inverse processes of the chain and product rules respectively (Integration by substitution includes finding a suitable substitution and is limited to cases where one substitution will lead to a function which can be integrated; integration by parts includes more than one application of the method but excludes reduction formulae.) Integrate using partial fractions that are linear in the denominator. Evaluate the analytical solution of simple first order differential equations with separable variables, including finding particular solutions (Separation of variables may require factorisation involving a common factor.) Interpret the solution of a differential equation in the context of solving a problem, including identifying limitations of the solution; includes links to kinematics. Numerical methods Locate roots of f(x) = 0 by considering changes of sign of f(x) in an interval of x on which f(x) is sufficiently well behaved. Understand how change of sign methods can fail. Solve equations approximately using simple iterative methods; be able to draw associated cobweb and staircase diagrams. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1=g(xn) Understand how such methods can fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in 	om of	
 processes of the chain and product rules respectively (Integration by substitution includes finding a suitable substitution and is limited to cases where one substitution will lead to a function which can be integrated; integration by parts includes more than one application of the method but excludes reduction formulae.) Integrate using partial fractions that are linear in the denominator. Evaluate the analytical solution of simple first order differential equations with separable variables, including finding particular solutions (Separation of variables may require factorisation involving a common factor.) Interpret the solution of a differential equation in the context of solving a problem, including identifying limitations of the solution; includes links to kinematics. Numerical methods Locate roots of f(x) = 0 by considering changes of sign of f(x) in an interval of x on which f(x) is sufficiently well behaved. Understand how change of sign methods can fail. Solve equations approximately using simple iterative methods; be able to draw associated cobweb and staircase diagrams. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1 = g(xn) Understand how such methods can fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in 	em or	
Iterespectively (Integration by substitution includes finding a suitable substitution and is limited to cases where one substitution will lead to a function which can be integrated; integration by parts includes more than one application of the method but excludes reduction formulae.) Integrate using partial fractions that are linear in the denominator. Evaluate the analytical solution of simple first order differential equations with separable variables, including finding particular solutions (Separation of variables may require factorisation involving a common factor.) Interpret the solution of a differential equation in the context of solving a problem, including identifying limitations of the solution; includes links to kinematics.Numerical methods Locate roots of f(x) = 0 by considering changes of sign of f(x) in an interval of x on which f(x) is sufficiently well behaved. Understand how change of sign methods can fail. Solve equations approximately using simple iterative methods; be able to draw associated cobweb and staircase diagrams. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1 = g(xn) Understand how such methods can fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in		
 includes finding a suitable substitution and is limited to cases where one substitution will lead to a function which can be integrated; integration by parts includes more than one application of the method but excludes reduction formulae.) Integrate using partial fractions that are linear in the denominator. Evaluate the analytical solution of simple first order differential equations with separable variables, including finding particular solutions (Separation of variables may require factorisation involving a common factor.) Interpret the solution of a differential equation in the context of solving a problem, including identifying limitations of the solution; includes links to kinematics. Numerical methods Locate roots of f(x) = 0 by considering changes of sign of f(x) in an interval of x on which f(x) is sufficiently well behaved. Understand how change of sign methods can fail. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1=g(xn) Understand how such methods can fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in 		
 will lead to a function which can be integrated; integration by parts includes more than one application of the method but excludes reduction formulae.) Integrate using partial fractions that are linear in the denominator. Evaluate the analytical solution of simple first order differential equations with separable variables, including finding particular solutions (Separation of variables may require factorisation involving a common factor.) Interpret the solution of a differential equation in the context of solving a problem, including identifying limitations of the solution; includes links to kinematics. Numerical methods Locate roots of f(x) = 0 by considering changes of sign of f(x) in an interval of x on which f(x) is sufficiently well behaved. Understand how change of sign methods can fail. Solve equations approximately using simple iterative methods; be able to draw associated cobweb and staircase diagrams. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1= g(xn) Understand how such methods can fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. 		
of a intintegrated; integration by parts includes more than one application of the method but excludes reduction formulae.) Integrate using partial fractions that are linear in the denominator. Evaluate the analytical solution of simple first order differential equations with separable variables, including finding particular solutions (Separation of variables may require factorisation involving a common factor.) Interpret the solution of a differential equation in the context of solving a problem, including identifying limitations of the solution; includes links to kinematics.Numerical methods Locate roots of f(x) = 0 by considering changes of sign of f(x) in an interval of x on which f(x) is sufficiently well behaved. Understand how change of sign methods can fail. Solve equations approximately using simple iterative methods; be able to draw associated cobweb and staircase diagrams. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1=g(xn) Understand how such methods can fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in		
of a ntmore than one application of the method but excludes reduction formulae.) Integrate using partial fractions that are linear in the denominator. Evaluate the analytical solution of simple first order differential equations with separable variables, including finding particular solutions (Separation of variables may require factorisation involving a common factor.) Interpret the solution of a differential equation in the context of solving a problem, including identifying limitations of the solution; includes links to kinematics.Numerical methods Locate roots of f(x) = 0 by considering changes of sign of f(x) in an interval of x on which f(x) is sufficiently well behaved. Understand how change of sign methods can fail. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1= g(xn) Understand how such methods can fail. Understand and use numerical integration 		
ntbut excludes reduction formulae.) Integrate using partial fractions that are linear in the denominator.formlinear in the denominator.itionEvaluate the analytical solution of simple first order differential equations with separable variables, including finding particular solutions (Separation of variables may require factorisation involving a common factor.) Interpret the solution of a differential equation in the context of solving a problem, including identifying limitations of the solution; includes links to kinematics.Numerical methods Locate roots of f(x) = 0 by considering changes of sign of f(x) in an interval of x on which f(x) is sufficiently well behaved. Understand how change of sign methods can fail.Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1= g(xn) Understand how such methods can fail.Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in	of a	
form itionlinear in the denominator. Evaluate the analytical solution of simple first order differential equations with separable variables, including finding particular solutions (Separation of variables may require factorisation involving a common factor.) Interpret the solution of a differential equation in the context of solving a problem, including identifying limitations of the solution; includes links to kinematics.Numerical methods Locate roots of f(x) = 0 by considering changes of sign of f(x) in an interval of x on which f(x) is sufficiently well behaved. Understand how change of sign methods can fail. Solve equations approximately using simple iterative methods; be able to draw associated cobweb and staircase diagrams. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1=g(xn) Understand how such methods can fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in		but excludes reduction formulae.)
itionEvaluate the analytical solution of simple first order differential equations with separable variables, including finding particular solutions (Separation of variables may require factorisation involving a common factor.) Interpret the solution of a differential equation in the context of solving a problem, including identifying limitations of the solution; includes links to kinematics.Numerical methods Locate roots of f(x) = 0 by considering changes of sign of f(x) in an interval of x on which f(x) is sufficiently well behaved. Understand how change of sign methods can fail. Solve equations approximately using simple iterative methods; be able to draw associated cobweb and staircase diagrams. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1= g(xn) Understand how such methods can fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in	·	
first order differential equations with separable variables, including finding particular solutions (Separation of variables may require factorisation involving a common factor.) Interpret the solution of a differential equation in the context of solving a problem, including identifying limitations of the solution; includes links to kinematics. Numerical methods Locate roots of f(x) = 0 by considering changes of sign of f(x) in an interval of x on which f(x) is sufficiently well behaved. Understand how change of sign methods can fail. Solve equations approximately using simple iterative methods; be able to draw associated cobweb and staircase diagrams. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1= g(xn) Understand how such methods can fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in	-	
 particular solutions (Separation of variables may require factorisation involving a common factor.) Interpret the solution of a differential equation in the context of solving a problem, including identifying limitations of the solution; includes links to kinematics. Numerical methods Locate roots of f(x) = 0 by considering changes of sign of f(x) in an interval of x on which f(x) is sufficiently well behaved. Understand how change of sign methods can fail. Solve equations approximately using simple iterative methods; be able to draw associated cobweb and staircase diagrams. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1=g(xn) Understand how such methods can fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in 		
 may require factorisation involving a common factor.) Interpret the solution of a differential equation in the context of solving a problem, including identifying limitations of the solution; includes links to kinematics. Numerical methods Locate roots of f(x) = 0 by considering changes of sign of f(x) in an interval of x on which f(x) is sufficiently well behaved. Understand how change of sign methods can fail. Solve equations approximately using simple iterative methods; be able to draw associated cobweb and staircase diagrams. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1= g(xn) Understand how such methods can fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in 		
Dintscommon factor.) Interpret the solution of a differential equation in the context of solving a problem, including identifying limitations of the solution; includes links to kinematics.Numerical methods Locate roots of f(x) = 0 by considering changes of sign of f(x) in an interval of x on which f(x) is sufficiently well behaved. Understand how change of sign methods can fail.Solve equations approximately using simple iterative methods; be able to draw associated cobweb and staircase diagrams. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1= g(xn) Understand how such methods can fail.Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in		•
 equation in the context of solving a problem, including identifying limitations of the solution; includes links to kinematics. Numerical methods Locate roots of f(x) = 0 by considering changes of sign of f(x) in an interval of x on which f(x) is sufficiently well behaved. Understand how change of sign methods can fail. Solve equations approximately using simple iterative methods; be able to draw associated cobweb and staircase diagrams. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1= g(xn) Understand how such methods can fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in 	oints	
 problem, including identifying limitations of the solution; includes links to kinematics. Numerical methods Locate roots of f(x) = 0 by considering changes of sign of f(x) in an interval of x on which f(x) is sufficiently well behaved. Understand how change of sign methods can fail. Solve equations approximately using simple iterative methods; be able to draw associated cobweb and staircase diagrams. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1= g(xn) Understand how such methods can fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in 		•
 the solution; includes links to kinematics. Numerical methods Locate roots of f(x) = 0 by considering changes of sign of f(x) in an interval of x on which f(x) is sufficiently well behaved. Understand how change of sign methods can fail. Solve equations approximately using simple iterative methods; be able to draw associated cobweb and staircase diagrams. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1= g(xn) Understand how such methods can fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in	τ	
 Locate roots of f(x) = 0 by considering changes of sign of f(x) in an interval of x on which f(x) is sufficiently well behaved. Understand how change of sign methods can fail. Solve equations approximately using simple iterative methods; be able to draw associated cobweb and staircase diagrams. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1= g(xn) Understand how such methods can fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in 	>	
 Locate roots of f(x) = 0 by considering changes of sign of f(x) in an interval of x on which f(x) is sufficiently well behaved. Understand how change of sign methods can fail. Solve equations approximately using simple iterative methods; be able to draw associated cobweb and staircase diagrams. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1= g(xn) Understand how such methods can fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in 		
 changes of sign of f(x) in an interval of x on which f(x) is sufficiently well behaved. Understand how change of sign methods can fail. Solve equations approximately using simple iterative methods; be able to draw associated cobweb and staircase diagrams. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1= g(xn) Understand how such methods can fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in 		
 which f(x) is sufficiently well behaved. Understand how change of sign methods can fail. Solve equations approximately using simple iterative methods; be able to draw associated cobweb and staircase diagrams. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1= g(xn) Understand how such methods can fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in 		
 Understand how change of sign methods can fail. Solve equations approximately using simple iterative methods; be able to draw associated cobweb and staircase diagrams. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1= g(xn) Understand how such methods can fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in 		6 6 ()
 Solve equations approximately using simple iterative methods; be able to draw associated cobweb and staircase diagrams. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1= g(xn) Understand how such methods can fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in 		
 iterative methods; be able to draw associated cobweb and staircase diagrams. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1= g(xn) Understand how such methods can fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in 		
 associated cobweb and staircase diagrams. Solve equations using the Newton-Raphson method and other recurrence relations of the form xn+1= g(xn) Understand how such methods can fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in 		
 method and other recurrence relations of the form xn+1= g(xn) Understand how such methods can fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in 		
 the form xn+1= g(xn) Understand how such methods can fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in 		
 methods can fail. Understand and use numerical integration of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in 		
of functions, including the use of the trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in		
trapezium rule and estimating the approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in		-
approximate area under a curve and limits that it must lie between. Use numerical methods to solve problems in		-
that it must lie between. Use numerical methods to solve problems in		
		that it must lie between.
context.		
		context.